Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY Seismic tomography is a cornerstone of geophysics and has led to a number of important discoveries about the interior of the Earth. However, seismic tomography remains plagued by the large number of unknown parameters in most tomographic applications. This leads to the inverse problem being underdetermined and requiring significant non-geologically motivated smoothing in order to achieve unique answers. Although this solution is acceptable when using tomography as an explorative tool in discovery mode, it presents a significant problem to use of tomography in distinguishing between acceptable geological models or in estimating geologically relevant parameters since typically none of the geological models considered are fit by the tomographic results, even when uncertainties are accounted for. To address this challenge, when seismic tomography is to be used for geological model selection or parameter estimation purposes, we advocate that the tomography can be explicitly parametrized in terms of the geological models being tested instead of using more mathematically convenient formulations like voxels, splines or spherical harmonics. Our proposition has a number of technical difficulties associated with it, with some of the most important ones being the move from a linear to a non-linear inverse problem, the need to choose a geological parametrization that fits each specific problem and is commensurate with the expected data quality and structure, and the need to use a supporting framework to identify which model is preferred by the tomographic data. In this contribution, we introduce geological parametrization of tomography with a few simple synthetic examples applied to imaging sedimentary basins and subduction zones, and one real-world example of inferring basin and crustal properties across the continental United States. We explain the challenges in moving towards more realistic examples, and discuss the main technical difficulties and how they may be overcome. Although it may take a number of years for the scientific program suggested here to reach maturity, it is necessary to take steps in this direction if seismic tomography is to develop from a tool for discovering plausible structures to one in which distinct scientific inferences can be made regarding the presence or absence of structures and their physical characteristics.more » « less
-
Abstract Shear attenuation provides insights into the physical and chemical state of the upper mantle. Yet, observations of attenuation are infrequent in the oceans, despite recent proliferation of arrays of ocean‐bottom seismometers (OBSs). Studies of attenuation in marine environments must overcome unique challenges associated with strong oceanographic noise at the seafloor and data loss during OBS recovery in addition to untangling the competing influences of elastic focusing, local site amplification, and anelastic attenuation on surface‐wave amplitudes. We apply Helmholtz tomography to OBS data to simultaneously resolve array‐averaged Rayleigh wave attenuation and maps of site amplification at periods of 20–150 s. The approach explicitly accounts for elastic focusing and defocusing due to lateral velocity heterogeneity using wavefield curvature. We validate the approach using realistic wavefield simulations at the NoMelt Experiment and Juan de Fuca (JdF) plate, which represent endmember open‐ocean and coastline‐adjacent environments, respectively. Focusing corrections are successfully recovered at both OBS arrays, including at periods <35 s at JdF where coastline effects result in strong multipathing. When applied to real data, our observations of Rayleigh wave attenuation at NoMelt and JdF revise previous estimates. At NoMelt, we observe a low attenuation lithospheric layer (> 1,500) overlying a highly attenuating asthenospheric layer (∼ 50 to 70). At JdF, we find a broad peak in attenuation (∼ 50 to 60) centered at a depth of 100–130 km. We also report strong local site amplification at the JdF Ridge (>10% at 31 s period), which can be used to refine models of crust and shallow mantle structure.more » « less
-
Abstract The rate of ocean‐crust production exerts control over sea level, mantle heat loss, and climate. Different strategies to account for incomplete seafloor preservation have led to differing conclusions about how much production rates have changed since the Cretaceous, if at all. We construct a new global synthesis of crust production along 18 mid‐ocean ridges for the past 19 Myr at high temporal resolution. We find that the global production rate during 6–5 Ma was only 69%–75% of the 16–15 Ma interval. The reduction in crust production is mostly due to slower seafloor spreading along almost all ridge systems. While the total ridge length has varied little since 19 Ma, some fast‐spreading ridges have grown shorter and slow‐spreading ridges grown longer, amplifying the spreading‐rate changes. Our production curves represent a new data set for investigating the forces driving plate motions and the role of tectonic degassing on climate.more » « less
An official website of the United States government
